Sharp Inequalities for Functional Integrals and Traces of Conformally Invariant Operators
نویسنده
چکیده
The intertwining operators Ad = Ad(g) on the round sphere (Sn, g) are the conformal analogues of the power Laplacians 1d/2 on the flat Rn . To each metric ρg, conformally equivalent to g, we can naturally associate an operator Ad(ρg), which is compact, elliptic, pseudodifferential of order d, and which has eigenvalues λ j (ρ); the special case d = 2 gives precisely the conformal Laplacian in the metric ρg. In this paper we derive sharp inequalities for a class of trace functionals associated to such operators, including their zeta function ∑ j λ j (ρ) −s , and its regularization between the first two poles. These inequalities are expressed analytically as sharp, conformally invariant Sobolev-type (or log Sobolev type) inequalities that involve either multilinear integrals or functional integrals with respect to d-symmetric stable processes. New strict rearrangement inequalities are derived for a general class of path integrals.
منابع مشابه
THE FUNCTIONAL DETERMINANTThomas
Results in the spectral theory of diierential operators, and recent results on conformally covariant diierential operators and on sharp inequalities, are combined in a study of functional determinants of natural diierential operators. The setting is that of compact Riemannian manifolds. We concentrate especially on the conformally at case, and obtain formulas in dimensions two, four, and six fo...
متن کاملConvex solutions to the power - of - mean curvature flow , conformally invariant inequalities and regularity results in some applications of optimal transportation
Convex solutions to the power-of-mean curvature flow, conformally invariant inequalities and regularity results in some applications of optimal transportation Shibing Chen Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2012 In this thesis we study three different problems: convex ancient solutions to the power-ofmean curvature flow; Sharp inequalities; regularity ...
متن کاملSharp constants in several inequalities on the Heisenberg group
We derive the sharp constants for the inequalities on the Heisenberg group H whose analogues on Euclidean space R are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Laplacian and c...
متن کاملSingular Integrals on Symmetric Spaces of Real Rank One
In this paper we prove a new variant of the Herz majorizing principle for operators defined by K-bi-invariant kernels with certain large-scale cancellation properties. As an application, we prove L p-boundedness of operators defined by Fourier multipliers which satisfy singular differential inequalities of the Hörmander-Michlin type. We also find sharp bounds on the L p-norm of large imaginary ...
متن کاملSharp Constants in Several Inequalities on the Heisenberg Group Rupert L. Frank and Elliott H. Lieb
Abstract. We derive the sharp constants for the inequalities on the Heisenberg group H whose analogues on Euclidean space R are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Lapla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002